Space Curves and Vector-Valued Functions

ثبت نشده
چکیده

has the unit circle as its graph, but these equations do not represent the same curve— because the circle is traced out in different ways on the graphs. Be sure you see the distinction between the vector-valued function and the real-valued functions and All are functions of the real variable but is a vector, whereas and are real numbers for each specific value of . Vector-valued functions serve dual roles in the representation of curves. By letting the parameter represent time, you can use a vector-valued function to represent motion along a curve. Or, in the more general case, you can use a vector-valued function to trace the graph of a curve. In either case, the terminal point of the position vector coincides with the point or on the curve given by the parametric equations, as shown in Figure 12.1. The arrowhead on the curve indicates the curve’s orientation by pointing in the direction of increasing values of t. x, y, z x, y r t t t h t g t , f t , r t t, h. g, f, r r sin t2 i cos t2 j r sin t i cos t j I. t h g, f, z h t y g t , x f t , f t , g t , h t C I. t g f y g t x f t f t , g t

منابع مشابه

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

متن کامل

Handout Five: Vector Fields

We have already studied several kinds of functions of several variables: vector valued functions of a scalar variable – i.e., parameterized curves in the plane and in space; scalar-valued functions of two or more variables (the case of two variables z = f(x, y) giving the graph of a surface in space; and functions from the plane to space, parameterized surfaces. Here we consider functions V fro...

متن کامل

Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series

In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.

متن کامل

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in  the unit ball of  the Hilbert space. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004